Weakly Supervised Object Detection Using Complementary Learning and Instance Clustering

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Instance Curriculum Learning for Weakly Supervised Object Detection

When supervising an object detector with weakly labeled data, most existing approaches are prone to trapping in the discriminative object parts, e.g., finding the face of a cat instead of the full body, due to lacking the supervision on the extent of full objects. To address this challenge, we incorporate object segmentation into the detector training, which guides the model to correctly locali...

متن کامل

Collaborative Learning for Weakly Supervised Object Detection

Weakly supervised object detection has recently received much attention, since it only requires imagelevel labels instead of the bounding-box labels consumed in strongly supervised learning. Nevertheless, the save in labeling expense is usually at the cost of model accuracy. In this paper, we propose a simple but effective weakly supervised collaborative learning framework to resolve this probl...

متن کامل

Weakly Supervised Learning for Salient Object Detection

Recent advances of supervised salient object detection models demonstrate significant performance on benchmark datasets. Training such models, however, requires expensive pixel-wise annotations of salient objects. Moreover, many existing salient object detection models assume that at least a salient object exists in the input image. Such an impractical assumption leads to less appealing salienc...

متن کامل

Self Paced Deep Learning for Weakly Supervised Object Detection

In a weakly-supervised scenario, object detectors need to be trained using image-level annotation only. Since bounding-box-level ground truth is not available, mostof the solutions proposed so far are based on an iterative approach in which theclassifier, obtained in the previous iteration, is used to predict the objects’ positionswhich are used for training in the current itera...

متن کامل

Weakly Supervised Object Detection with Posterior Regularization

Motivation: In weakly supervised object detection where only the presence or absence of an object category as a binary label is available for training, the common practice is to model the object location with latent variables and jointly learn them with the object appearance model [1, 5]. An ideal weakly supervised learning method for object detection is expected to guide the latent variables t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2020

ISSN: 2169-3536

DOI: 10.1109/access.2020.2999596